Cyclic sieving, skew Macdonald polynomials and Schur positivity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Schur Expansion of Macdonald Polynomials

Building on Haglund’s combinatorial formula for the transformed Macdonald polynomials, we provide a purely combinatorial proof of Macdonald positivity using dual equivalence graphs and give a combinatorial formula for the coefficients in the Schur expansion.

متن کامل

Positivity Questions for Cylindric Skew Schur Functions

Recent work of A. Postnikov shows that cylindric skew Schur functions, which are a generalisation of skew Schur functions, have a strong connection with a problem of considerable current interest: that of finding a combinatorial proof of the non-negativity of the 3-point Gromov-Witten invariants. After explaining this motivation, we study cylindric skew Schur functions from the point of view of...

متن کامل

Maximal supports and Schur-positivity among connected skew shapes

The Schur-positivity order on skew shapes is defined by B ≤ A if the difference sA − sB is Schur-positive. It is an open problem to determine those connected skew shapes that are maximal with respect to this ordering. A strong necessary condition for the Schur-positivity of sA−sB is that the support of B is contained in that of A, where the support of B is defined to be the set of partitions λ ...

متن کامل

A positivity result in the theory of Macdonald polynomials.

We outline here a proof that a certain rational function C(n)(q, t), which has come to be known as the "q, t-Catalan," is in fact a polynomial with positive integer coefficients. This has been an open problem since 1994. Because C(n)(q, t) evaluates to the Catalan number at t = q = 1, it has also been an open problem to find a pair of statistics a, b on the collection (n) of Dyck paths Pi of le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic Combinatorics

سال: 2020

ISSN: 2589-5486

DOI: 10.5802/alco.123